20,143 research outputs found

    Microfluidics: an enabling technology for the life sciences

    Get PDF
    During the last year we have investigated existing and future markets, products and technologies for microfluidics in the life sciences. Within this paper we present some of the findings and discuss a major trend identified within this project: the development of microfluidic platforms for flexible design of application specific integrated microfluidic systems. We discuss two platforms in detail which are currently under development in our lab: microfluidics on a rotating CD ("Lab-CD") as well as a platform to realized customized "nanoliter & picoliter dispensing systems"

    Steady state sedimentation of ultrasoft colloids

    Full text link
    The structural and dynamical properties of ultra-soft colloids - star polymers - exposed to a uniform external force field are analyzed applying the multiparticle collision dynamics approach, a hybrid coarse-grain mesoscale simulation approach, which captures thermal fluctuations and long-range hydrodynamic interactions. In the weak field limit, the structure of the star polymer is nearly unchanged, however in an intermediate regime, the radius of gyration decreases, in particular transverse to the sedimentation direction. In the limit of a strong field, the radius of gyration increases with field strength. Correspondingly, the sedimentation coefficient increases with increasing field strength, passes through a maximum and decreases again at high field strengths. The maximum value depends on the functionality of the star polymer. High field strengths lead to symmetry breaking with trailing, strongly stretched polymer arms and a compact star polymer body. In the weak field linear response regime, the sedimentation coefficient follows the scaling relation of a star polymer in terms of functionality and arm length

    Grasses and the resource availability hypothesis: the importance of silica-based defences

    Get PDF
    The resource availability hypothesis (RAH) predicts that allocation of resources to anti-herbivore defences differs between species according to their growth rate. We tested this hypothesis by assessing the growth and defence investment strategies of 18 grass species and comparing them against vole feeding preferences. In addition, we assessed the effectiveness of silica, the primary defence in many grasses, in influencing vole feeding behaviour. Across species, we found that there was a strong negative relationship between the overall investment in defence and growth rate, thus supporting predictions of the RAH. However, no such relationship was found when assessing the various individual anti-herbivore defences, suggesting that different grass species show significant variation in their relative investment in strategies such as phenolic concentration, silica concentration and leaf toughness. Silica was the most influential defensive factor in determining vole feeding preference. Experimentally induced increases in leaf silica concentration deterred vole feeding in three of the five species tested, and altered feeding preference ranks between species. The strong positive relationship between silica concentration and leaf abrasiveness, when assessed both within and between species, suggests that increased abrasiveness is the mechanism by which silica deters feeding. Although grasses are often considered to be tolerant of herbivore damage rather then defended against it, they do follow predictions of defence allocation strategy based on their growth rates, and this affects the feeding behaviour of generalist grass-feeding herbivores

    A Dynamic Game Model of Collective Choice in Multi-Agent Systems

    Full text link
    Inspired by successful biological collective decision mechanisms such as honey bees searching for a new colony or the collective navigation of fish schools, we consider a mean field games (MFG)-like scenario where a large number of agents have to make a choice among a set of different potential target destinations. Each individual both influences and is influenced by the group's decision, as well as the mean trajectory of all the agents. The model can be interpreted as a stylized version of opinion crystallization in an election for example. The agents' biases are dictated first by their initial spatial position and, in a subsequent generalization of the model, by a combination of initial position and a priori individual preference. The agents have linear dynamics and are coupled through a modified form of quadratic cost. Fixed point based finite population equilibrium conditions are identified and associated existence conditions are established. In general multiple equilibria may exist and the agents need to know all initial conditions to compute them precisely. However, as the number of agents increases sufficiently, we show that 1) the computed fixed point equilibria qualify as epsilon Nash equilibria, 2) agents no longer require all initial conditions to compute the equilibria but rather can do so based on a representative probability distribution of these conditions now viewed as random variables. Numerical results are reported

    Eminence Grise Coalitions: On the Shaping of Public Opinion

    Full text link
    We consider a network of evolving opinions. It includes multiple individuals with first-order opinion dynamics defined in continuous time and evolving based on a general exogenously defined time-varying underlying graph. In such a network, for an arbitrary fixed initial time, a subset of individuals forms an eminence grise coalition, abbreviated as EGC, if the individuals in that subset are capable of leading the entire network to agreeing on any desired opinion, through a cooperative choice of their own initial opinions. In this endeavor, the coalition members are assumed to have access to full profile of the underlying graph of the network as well as the initial opinions of all other individuals. While the complete coalition of individuals always qualifies as an EGC, we establish the existence of a minimum size EGC for an arbitrary time-varying network; also, we develop a non-trivial set of upper and lower bounds on that size. As a result, we show that, even when the underlying graph does not guarantee convergence to a global or multiple consensus, a generally restricted coalition of agents can steer public opinion towards a desired global consensus without affecting any of the predefined graph interactions, provided they can cooperatively adjust their own initial opinions. Geometric insights into the structure of EGC's are given. The results are also extended to the discrete time case where the relation with Decomposition-Separation Theorem is also made explicit.Comment: 35 page

    Follow-up after treatment for head and neck cancer: United Kingdom National Multidisciplinary Guidelines

    Get PDF
    This is the official guideline endorsed by the specialty associations involved in the care of head and neck cancer patients in the UK. In the absence of high-level evidence base for follow-up practices, the duration and frequency are often at the discretion of local centres. By reviewing the existing literature and collating experience from varying practices across the UK, this paper provides recommendations on the work up and management of lateral skull base cancer based on the existing evidence base for this rare condition
    • 

    corecore